Survey on Medicinal Plants used for Anti-diabetic Activity in Kaski District, Nepal

¹*Puja Shrestha*, ¹*Nirmala Jamarkattel-Pandit* ¹School of Health and Allied Sciences, Pokhara University, Nepal

ABSTRACT

Nepal is a Himalayan country with disproportionately rich cultural and ethnic diversity, recorded of over 700 species of medicinal plants. Most of the people in rural area rely on herbal medicines to treat diabetes mellitus since they have limited resources and do not have access to modern treatment. The main aim of the study was to search the medicinal plants used for diabetes mellitus for the development of evidence based medicine. The study was conducted in five different places of Kaski District, Nepal with two hundred numbers of respondents. It was found that majority of them had good knowledge on traditional use of the plants for diabetes and had been using 52 plant species of 35 families in which *Asparagus racemosus, Momordica charantia, Berberis aristata, Azadiracta indica, Holorhena pubences, Eugenia jambolana, Aegle marmelous* and *Gymnema sylvestre* are the most widely used plants for anti-diabetic purposes.

Key words: Diabetes Mellitus, Medicinal Plants, Kaski District, Survey, Respondents

Corresponding address: Nirmala Jamarkattel-Pandit

School of Health and Allied Sciences, Pokhara University, Nepal E-mail: nirmalajk@hotmail.com

INTRODUCTION

Natural products have played an important role in the treatment of various diseases and in drug discovery processes for thousands of year. The ancient civilizations of the Chinese, Indians and North Africans provide written evidence for the use of natural sources for curing various diseases. It has remained a source of new compounds with diversified structural arrangements possessing interesting biological activities. The earliest known written document is a 4,000 year old Sumerian clay tablet that records remedies for various illnesses. For instance, mandrake was prescribed for pain relief, turmeric possesses blood clotting properties, roots of the endive plant were used for treatment of gall bladder disorders and raw garlic was prescribed for circulatory disorders. These are still being used in several countries as alternative medicines. Friedrich Sertürner isolated morphine from Papaver somniferum in 1806 and since then natural products have been extensively screened for their medicinal purposes. Atropine from Atropa belladonna, strychnine isolated from Conus magus, and Taxol obtained from the bark of the Pacific yew tree are a few examples of active isolated compounds from natural sources¹.

It is estimated that more than 25% of all current prescription drugs are derived from plants. Among the drugs developed over past 25 years, 5% were natural products, 27% were derivatives of natural products and 30% were synthetic drugs inspired by natural products. The most successful story of the discovery of the anti-diabetic drugs from natural products is metformin. Its parent compound is natural guanide originally purified from the plant *Galegine officinalis*².

Despite competition from other drug discovery methods, natural products are still providing their share of new clinical candidates and drugs. These compounds are still a significant source of new drugs, especially in the anticancer, antihypertensive, antiinfective, immune suppression and neurological disease therapeutic areas and some of them have since progressed further into clinical trials or into the market. Therefore, in addition to being a proven and important source of drug leads, natural products derived drugs also contribute significantly to the profitability of many companies. A natural product is a chemical compound or substance produced by a living organism found in nature that usually has a biological activity for use in pharmaceutical drug discovery and drug design. A crude extract from natural product contains novel, structurally diverse chemical compounds. Not all natural products can be fully synthesized and many natural products have very complex structures that are too difficult and expensive to synthesize on an industrial scale. These include drugs such as penicillin, morphine and formerly paclitaxel. Such compounds can only be harvested from their natural source a process which can be tedious, time consuming, and expensive as well as being potentially unsustainable for the resource³.

Nepal is Himalayan а country with disproportionately rich cultural and ethnic diversity, lies in the temperate zone with an added advantage of altitude from 1220 to 8848 m above mean sea level, except for a few places that lie below 1220 m. The diversity of species in Nepalese flora offers great opportunities for the search of medicinal substances, not yet described or discovered. Nepal has a record of over 700 species of medicinal plants. There is a store of still unwritten and undocumented traditional knowledge on the use of plants for healing purposes. To sustain and perpetuate folk medicine systems to provide primary health care for the majority of inhabitants in the rural area, medicinal plants are bound to play pivotal role⁴.

Diabetes mellitus (DM) is considered as a major health risk in the world caused by the deficiency of effective insulin in the body. It causes the disturbance of metabolism of carbohydrate in body. This results in hyperglycemia (excessive sugar in the blood) and glycosurea (presence of sugar in the urine). Some other symptoms associated with disease are polydipsia (increased thirst), polyurea (increased urinary output), ketonemia and ketonurea (presence of ketone bodies in the blood and urine, respectively). As the disease progresses tissue or vascular damage ensues adding to severe diabetic complications such as retinopathy, nephropathy, neuropathy and ulceration, thus diabetes mellitus is a chronic and progressive conditions associated with serious micro vascular and macro vascular complications⁵.

WHO has listed 21,000 plants for medicinal purposes around the world. Among them, 800 plants

have been reported to show antidiabeticpotential. The pharmacological actions of plant materials typically result from the combination of secondary metabolites present in the plant like polyphenols, flavonoids, alkaloids, tannins, saponins, volatile oils, etc. which are known as phytochemicals⁶. Phytochemicals exert their effect by resembling endogenous metabolites, ligands, hormones, signal transduction molecules or even neurotransmitters.

Most of the people in developing countries rely on herbal medicines to treat diabetes mellitus since they have limited resources and do not have access to modern treatment. Several compounds derived from these herbal medicines are in use for various kinds of disease and disorders. Another important factor that supports the use of plant materials as antidiabetic could be due to the belief that herbs provide some benefits over allopathic medicine and allow the users to take medications of their choice⁷. Therefore, the aim of the study was to search the medicinal plants used by local people for the treatment of diabetes.

MATERIALS AND METHODS Study Area

Kaski District (83°40' east to 84°12' East longitude and 28°06' north to 28°36' North latitude) which is a historical and twenty third largest densely populated density district of the country was selected for the study. The total area of the district is 2017 sq.km. Different types of climate like subtropical, temperate, temperate cold, alpine and tundra is found in Kaski district. The Maximum rainfall was recorded as 701.7 mm in 2009 August and similarly, the maximum temperature was recorded 32°C in summer and 2.2°C in winter season. The temperature is always influenced with variation in altitude.

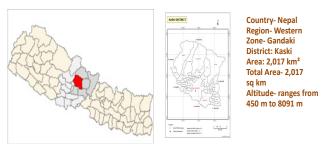


Figure 1: Location map of Kaski District Source: http:// ganthan.com/kaski-district-map/

Study Design

Survey was conducted to investigate anti-diabetic medicinal plants used by local people in Kaski District during different periods of year 2015-2016. 200 peoples from different five places (Gandruk, Hemja, Lamachour, Khudi and Kotre) were selected and information regarding the antidiabetic medicinal plants was collected through questionnaire and personal interviews. A verbal consent from the respondents was taken before the study.

RESULTS AND DISCUSSION

A list of plant species along with their local name, scientific name, family name, parts used and methods of uses is given below in Table 1. The investigation revealed 52 plant species belonging to 35 families are being used to cure diabetes. It was also found that people from any occupation and age above 25 years used medicinal plants to cure diabetes. In the local market of Kaski district it was found that major component of herbal and avurvedic formulation for antidiabetic purposes being used were Asparagus racemosus, Momordica charantia, Berberis aristata, Syzygium cumini, Aegle marmelous, and Gymnema sylvestre. During survey, it was found that Momordica charantia (16%), Asparagus racemosus (14%), Aegle marmelous (13%), Berberis aristata (11%), Holorhena pubences (12%), Eugenia jambolana (12%), Azadiracta indica (12%) and Gymnema sylvestre (10%) were the most widely used plants for diabetics. These plants are consumed either in the form of juice, powder or boiled extract of leaves, roots, seed, fruits, bark and flower. Regarding all identified plants, leaves and seeds were the major plant parts used, which is in agreement with other studies8.

About sixteen percent of total respondent uses karela (*M. charantia*) for the treatment of diabetic and this indigenous knowledge is supported by various scientific studies. *M. charantia* have been reported to possess hypoglycaemic activity on streptozotocin induced diabetic rats and suggested that oral feeding of fruit juice may have a role in the renewal of β cell in STZ diabetic rats or alternately may permit the recovery of partially destroyed β cell⁹.

A. indica commonly known as neem is an indigenous plant widely available in Nepal. In this study about twelve percent of total respondent used *A.indica* for the treatment of diabetic which is also supported by various scientific studies. Effect of *A. indica* leaf extract on serotonin inhibition in glucose mediated insulin release in rat pancreas was studied in vitro to elucidate the possible mechanism of antihyperglycemic effect¹⁰. In another study it was shown that hydroalcoholic extracts of this plant has antihyperglycemic activity in streptozotocin treated rats and this effect is because of increase in glucose uptake and glycogen deposition in isolated rat hemi diaphragm¹¹.

Ethanolic extract of dried seed of E. jambolana has been reported to have antidiabetic effects on streptozotocin induced diabetes. Extract was given orally and showed dose dependent decrease in blood glucose level in diabetic rats¹². The leaf extract of G. sylvestre was demonstrated to possess a significant antidiabetic activity in alloxan induced and normal fasting rats in 30-day chronic studies. G. sylvestre crude extracts and its isolated compound, dihydroxy gymnemic triacetate, also exhibited hypoglycemic effect against streotozotocin induced diabetic rats¹³. A significant decrease in liver glycogen of diabetic rats is reversed to almost the normal level by the leaf extract of A. marmelous and it also decreases the blood urea and serum cholesterol. A similar effect is seen with insulin treatment and the results indicate that the active principle in A. marmelos leaf extract has similar hypoglycemic activity to insulin treatment¹⁴. A. racemosus root has previously been reported to reduce blood glucose in rats and rabbits. Study of the effects of the ethanol extract and five partition fractions of the root of A. racemosus were evaluated on insulin secretion together with exploration of their mechanisms of action. The ethanol extract and each of the hexane, chloroform and ethyl acetate partition fractions concentrationdependently stimulated insulin secretion in isolated perfused rat pancreas, isolated rat isletcells and clonal β cells¹⁵. Ethanolic extract *B. aristata* produced significant antihyperglycemic activity in streptozotocin induced diabetic rat which is comparable to metformin¹⁶.

In such a way the most frequently used anti-diabetic medicinal plants in Kaski District is

supported by the various scientific studies as well. There is an urgent need to explore and document the ethnomedicinal plants used by different communities of Kaski District before such knowledge vanishes. As indigenous knowledge on usages of medicinal plants is transmitted without any systematic process and younger generation of communities are not interested in traditional healing system as it has no or very little scope for income. Thus, it becomes necessary to acquire and preserve this traditional system of medicine by documentation and identification of specimens.

Table 1: A list of plant species along with their local name, scientific name, family name, parts used and methods of uses.

S.No.	Local Name	Scientific Name	Family	Parts used	Method of use and administration
1.	Gheu Kumari	Aloe vera	Asphodelaceae	Leaves	Latex of leaves juice
2.	Parijat	Nyctanthes Arbortritis	oleaceae	Twig and flower	juice from 7 pieces of twigs or flower with water
3.	Amba	Pisidum gujava L.	Myrtaceae	Leaves, fruit, twig	Juice of leaves, fruit
4.	Tulsi	Ocimum tenuiflorum	Lamiaceae	Leaves	Eating raw leaves, decoction
5.	Kurilo	Asparagus racemosus	Liliaceae	Twig,stem	Eating like soup of twig
6.	Bindi	Abelmoschus esculentus	Malvaceae	Fruit	1 glass juice empty stomach
7.	Karela	Momordica charantia	Cucubitaceae	Fruit	Juice of fruit, vegetable
8.	Neem	Azaricta indica	Meliaceae	Juice of leaves	Leaves
9.	Tite pati	Artemisia vulgaris		Leaves	2,3 green leaves are chewed
10.	Asuro	Justicia adhatoda	Acanthaceae	Leaves	1 glass of juice from leaves
11.	Chutro	Berberis aristata	Berberidaceae	Roots	Root of chutro is soaked in water and that water is taken next morning, 2 times a day.
12.	Kera	Musaparadisiaca	Musaceae	Fruit	Raw babana is eaten
13.	Sisno	Girardiana diversifolia	Urticaeceac	Growing buds	Growing buds are dried and powdered and taken by mixing with water
14.	Chinijhar	Scorparia dulcis	Scrophulariaceae	whole plant	Drinking juice by crushing whole plant
15.	Jamun	Syzygium cumini	Myrtaceae	Fruit, seed	Eaten fruits and even the seeds
16.	Methi	Trigonella foenum graecumlinn	Fabaceae	Seed	Seeds are soaked in water and eaten

17.	Gudmaar	Gymnema sylvestre	Asclepiadaceae	Leaves	leaves are eaten
18.	Amala	Phyllanthus emblica	Euphorbiaceae	Fruit	Chew fruit
19.	Gahu	Triticum vulgare	Graminaceae	Nal	Nal is boiled and water is drank
20.	Chiraito	Swertia chirayita	Gentianaceae	Root	root is soaked in water and that water is drink next morning
21.	Satuwa	Paris polyphylla san	Liliaceae	Whole plant	Crushed and taken
22.	Ukhu	Saccharum offinarum	Poaceae	Stem	Juice
23.	Dhobini	Mussaenda macrophylla	Rubiaceae	Root	Root juice
24.	Harro	Terminalia chebula	Combretaceae	Fruit	Dried fruits are eaten
25.	Barro	Terminalia bellirica	Noctuidae	Fruit	Dried fruits are eaten
26.	Lapsi	Choerospondias axillaris	Anacardiaceae	Fruit	Chew fruits
27.	Indrajau	Hollarhenna pubecens	Apocynaceae	Seed, leaf	Seeds chewed directly, decoction of leaves
28.	Bel	Aegle marmelos	Rutaceae	Fruit	Juice of fruit
29.	Aduwa	Zingiber officinalis	Zingiberaceae	Root	Juice of roots, mixed with curry and decoction
30.	Pharsi	Cucurbita mixta	Cucurbitaceae	Fruit	Eaten as vegetable, boiled fruit is eaten
31.	Laliguras	Rhododendron arboneum	Ericaceae	Flower, leaves	flower is eaten
32.	Pakhanbed	Bergenia ciliate	Taxaceae		
33.	Rajbriksha	Cassia fistula	Fabaceae	Fruit	Fruit pulp is eaten.
34.	Kyamuna	Cleistocalyx operculatus	Myrtaceae	Bark	
35.	Sal	Shorea robusta	Dipterocarpaceae	Seed	Seed are eaten
36.	Siplikan	Crateva unilocularis	Capparaceae	Leaves	Decoction, as curry
37.	Koiralo	Bauhinia variegate	Leguminosae	Flower	As curry, decoction of flower
38.	Ajammari	Kalanchoe spathulata	Crassulaceae	Leaves	Decoction, juice
39.	Makai	Zea mays	Poaceae	Fruits	Eaten boiled maize, dried maize rice
40.	Gurjo	Tinospora cordifolia	Menispermaceae	Whole plant	Decoction of leaves, roots are used

41.	Akbarekhursani	Capsicum annuum L.	Solanaceae	Fruits	Eaten raw or in dried form mixed with curry
42.	Kodo	Origanum vulgare		Seed	Eaten dhido, roti
43.	Phapar			Seed	Eaten dhido, roti
44.	Thakailo	Cirsium verutum		Root	Roots are crushed and the juice is taken
45.	Kubija				
46.	Kutki	Picrorrhiza kurroa	Scrophulariaceae		
47.	Simali	Vitex nigundo	Labitaceae	Whole plant	Leaves are crushed and juice is taken
48.	Marathi	Acmella calva	Compositae	Whole plant	
49.	Bhuiamala	Phyllanthus virgatus	Euphorbiaceae	Fruit	Fruit is chewed
50.	Kantakari				
51.	Lasun			Whole plant	Leaves, roots are eaten
52.	Datiwan	Achyranthes aspera	Amaranthaceae	Whole plant	Decoction of the leaves are used

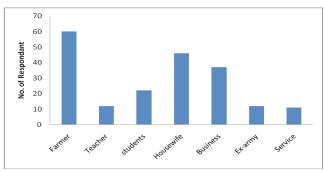


Figure 2: Personal status of respondent: Data are presented as no. of respondents with their occupations.

 Table 2 : More frequently used medicinal plant

 by local people

Scientific Name	Local name of Plant	% of respondents
Momordica charantia	Karela	16.00%
Azadiracta indica	Neem	12.00%
Asparagus racemosus	Kurilo	14.00%
Aegle marmellous	Bel	13.00%
Holorhena pubences	Indrajau	12.00%
Gymnema sylvestre	Gudmaar	10.00%
Berberis aristata	Chutro	11.00%
Eugenia jambolana	Jamun	12.00%

CONCLUSION

Among 52 plant species of 35 families, Asparagus racemosus, Momordica charantia, Berberis aristata, Azadiracta indica, Holorhena pubences Eugenia jambolana Aegle marmelous and Gymnema sylvestre are the most widely used plants for antidiabetic purposes.

REFERENCES

- Newman DJ and Cragg GM. Natural Products as Sources of New Drugs Over the Last 25 Years, Journal of Natural Product, 2007;70, 461-477.
- 2. Stanley MH and Ji-Ming. Strategies for the Discovery and Development of Anti-Diabetic Drugs from the Natural Products of Traditional Medicines, Journal of Pharmaceutical Science, 2013; 16(2), 202-216
- 3. Lahlou M. The Success of Natural Products in Drug Discovery, Pharmacology and Pharmacy, 2013; 4, 17-31.
- 4. Gewali MB.Aspects of Traditional Medicine in Nepal, University of Toyama, Japan.2008.
- 5. Raj VV, Srikanth L and Venkateshwarlu L. In Vivo Animal Models for Screening of Antidiabetic Activity, International Journal of Phar-

ma and Bio Sciences, 2010; 1, 669-685.

- Soud AE, Khalil MY, Hussein JS, Oraby FSH and Hussein AR. Antidiabetic Effects of Fenugreek Alkaliod Extract in Streptozotocin Induced Hyperglycemic Rats, Journal of Applied Sciences, 2007; 3(10), 1073-1083.
- 7. Mukherjee PK, Maiti K, Mukherjee K and Houghton PJ. Leads from Indian Medicinal Plants with Hypoglycemic Potentials, Journal of Ethnopharmacology, 2006; 106, 1-28.
- Kadir MF, Bin Sayeed MS, Shams T, Mia MMK.Ethnobotanical Survey of Medicinal Plants Used by Bangladeshi Traditional Health Practitioners in the Management of Diabetes Mellitus, Journal of Ethnopharmacoly, 2012; 144, 605-611.
- 9. Waheed A, Miana GA and Ahmad SI. Clinical Investigation of Hypoglycemic effect of Seeds of *Azadiracta indica* in type-2 Diabetes (NIDDM), Journal of Pharmaceutical sciences, 2006; 19, 322-325.
- Chattopadhyay RR. Possible Mechanism of Antihyperglycemic Effect of Azadirachtaindicaleaf extract, Journal of Ethnopharmacology, 1999; 67, 373-376.
- 11. Modak M, Dixit P, Londhe J, Ghaskadbi S and Devasagayam TPA. Indian Herbs and Herbal Drugs Used for the Treatment of Diabetes, Journal of Clinical Biochemistry and Nutrition, 2007; 40, 163-173.

- 12. Chaturvedi A, Bhawani G, Agrawal PaK, Goel S, Singh A and Goel RK. Antidiabetic and Antiulcer Effects of Extract of *Eeugenia jambolana* Seed in Mild Diabetic Rats: Study on Gastric Mucosal Offensive Acid-Pepsin Secretion, Indian Journal of Pharmacology, 2009; 53, 137-146.
- 13. Osadebe P, Odoh E and Uzor P. Natural Products as Potential Sources of Antidiabetic Drugs, British Journal of Pharmaceutical Research, 2014; 4(17), 2075-2095.
- 14. Kavishankar GB, Murthy SM and Nirjana SR. Diabetes and Medicinal Plants-A review, International Journal of Pharmaceutical and Biomedical Sciences, 2011;2(3), 65-80.
- Hannan JMA, Marinah L, Ali L, Rokeya B and Wahab YHA. Insulin Secretory Actions of Extracts of *Asparagus racemosus*Root in Perfused Pancreas, Isolated Islets and Clonal Pancreatic β-cells, Journal of Endocrinology, 2007; 192, 159–168.
- Pareek A and Suthar M. Antidiabetic Activity of Extract of *Berberis aristata* Root in Streptozotocin- Induced Diabetic Rats, Pharmacology online, 2010; 2, 179-185.
- URL-1 http:// ganthan.com/kaski-district-map/ (assessed on 8th November, 2016).
- URL-2 http:// www.who.int/mediacentre/factsheets/fs312/en (assessed on 10th October, 2016). 48